Regional Training Workshop "Advances in Remote Sensing Application in Water Resources Management" # Flood and Drought Monitoring and Prediction by Satellite-based Microwave Remote Sensing #### **Toshio Koike** Director, International Centre for Water Hazard and Risk Management (ICHARM) Council Member, Science Council of Japan (SCJ), Cabinet Office of Japan Professor Emeritus, the University of Tokyo Chair, River Council of Japan ## **Definition of Remote Sensing** Remote Sensing is a technology for identifying a target and estimating its physical, chemical and biological conditions without touching by using its inherent characteristics of emission, reflection, absorption and transmission of electromagnetic wave and its radiation transfer. # 0.4-0.7um NaCl Fig. 4. Optical Emission Spectrometry | Electromagnetic Waves | | Wavelength | generated by | | |-----------------------|------------|----------------|--|----| | γ-RAY | | - 0.1 nm | atomic nucleas interaction | 1 | | X-RAY | | 0.1 - 10 nm | core electron ionization |] | | UV | | 10 nm - 0.4 μm | hull electron ionization |]. | | VISIBLE | | 0.4 - 0.7 µm | hull electron exicitation |] | | INFRARED | NEAR | 0.7 - 1.3 µm | thermal vibration of molecule and lattice of the substance | ŀ | | | SHORT WAVE | 1.3 - 3 µm | | | | | MEDIUM | 3 - 8 µm | | | | | THERMAL | 8 - 14 µm | | 4 | | | FAR | 14 µm - 1 mm | | | | MICROWAVE | | 1mm - 1m | rotation/reversal mode |] | #### **WATER** Microwave Remote Sensing # Strong Dipole Molecule #### **Unique Roles in the Earth Environment** - Large Specific Heat of Liquid Water: - → Ocean as a heat transporter - Large Heat Exchange through Liquid Gas Phase Transition → Water vapor as a heat transporter - Solid ICE Crystal Lattice: - → Ice floats in water & bine drives the great ocean conveyor belt. Strong Dielectric Material #### Microwave Remote Sensing of Land Hydrology ## Satellite Precipitation Sensors # Land Surface Monitoring by SAR SAR measures a intensity of microwaves reflected from the earth's surface The intensity is called "backscattering coefficient $\sigma^0 = f(Mv, Sd, Cl, Sv, D)$ #### Soil moisture: Mv: Volume fraction of soil moisture (vol.) #### Surface roughness: Sd: Standard deviation of surface height (cm) CI: Surface correlation length (cm) #### Soil parameter: Sv: Volume fraction of soil grains (vol.) D: mean diameter of soil grains (cm) **Scattering image** # Nigeria Flood in September 2018 World Africa Americas Asia Australia China Europe India Middle East United Kingdom ition v Q = # Nigeria declares 'national disaster' after severe floods kill 100 By Damilola Odufuwa and Bukola Adebayo, for CNN ① Updated 1029 GMT (1829 HKT) September 18, 2018 A man gestures next to his flooded house following heavy rain near the Nigerian town of Lokoja, in Kogi State, on September 14, 2018. Residents steer a dugout canoe past flooded houses in Lokoja capital of Kogi State on September 14, # Nigeria floods kill 100 people across 10 states A national disaster has been declared in four states after devastating floods hit different parts of Nigeria. vigeria's rainy season brings with it inevitable flooding [Afolabi Sotunde/Reuters] https://www.aljazeera.com/news/2018/09/nigeria-floods-kill-100-people-10-states-180917193612830.html https://edition.cnn.com/2018/09/18/africa/nigeria-flood-national-disaster/index.html ## Identify inundation area on Sep-22, 2018 Source: **Copernicus Sentinel Data** Easily identification & high frequency but covered with cloud All weather & high spatial resolution but low frequency Flood Area by SAR Flood Area map Source of back image: "NASA Worldview" ## Niger River Flood Area Map 5) Oct-10, 2018 6) Oct-22, 2018 7) Nov-03, 2018 8) Nov-15, 2018 Source of back image: "NASA Worldview" #### Physical Measurement Approach #### The Radiative Transfer Equation # Temporal Variation of Spatially Averaged Validation # Seasonal Variation of the Soil Moisture in the Tibetan Plateu 6G Mv(%) tibet_D 2003SEP-lost ## Microwave Remote Sensing of Land Hydrology AMSR2 Carbon-LAI conversion model #### Background: Scientific Contribution Model Coupled **Data Assimilation** Electronic-Magnetic Wave (leaf area index) Leaf Biomass SiB2 model ! (Net Primary Production) Carbon Allocation **Dynamic Vegetation Model** Root Biomass Sawada & Koike, JGR (2014) Stress-induced loss turnover Update arpon-pool → Relationship between ecological and hydrological processes is important for analyzing drought process. #### **Hydrometeorology-Agriculture Droughts Prediction System** #### **Drought analysis** #### Wheat production #### **2007 Morocco Drought** #### LAI anomaly from CLVDAS #### **Hydrometeorology-Agriculture Droughts Prediction System** # **Agricultural Drought Monitoring-Prediction** Aqua AMSR-E #### North Africa Drought Early Warning System based on Satellite Land Data Assimilation From 20070101 To 20070331 = 90days, 90frames 200701 200803 200801 200802 Loop: ✓ Int.: 100 ▼ (ms) #:1 << |< < || > > Reanalysis LAI anomaly 20070101 Forecast LAI anomaly ave 20070101 from 200701 Tunisia LAI #### Background: Long-term Serious Droughts Rainfall Anomaly Number of Dry Days Vegetation Water Supply Index (VWSI) Anomaly Marengo et al., 2017 | # . | Deliverable . | Expected Date | |--------|---|--------------------------------| | 0 0 | On signing of the Contract and commencement of the Services | On or around May 31, 2018 | | Compon | ent 1: Northeast Agriculture Drought Overview | | | 1 0 | Action Plan for Components 1 and 2 | On or around June 18, 2018 | | 2 . | First Face to Face exchange in Fortaleza, Brazil | Week of 18-22 June, 2018 | | 3 . | Agricultural drought monitoring: system parameter confirmation | On or around August 31, 2018 | | 4 . | Agricultural drought monitoring and seasonal prediction system for the Northeast of Brazil | On or around December 31, 2018 | | Compon | ent 2: Agricultural Drought Monitoring and Forecasting Pilot f | for the <u>Ceará</u> State | | 5 & | Second Face to Face exchange, training activities in Tokyo, Japan | October (4 weeks), 2018 | | 6 ₽ | Pilot agriculture-drought monitoring and prediction system for the Ceará State | On or around March 31, 2019 | | Compon | ent 3: Assess the pilot's results and establish a strategy to scale | up the system | | 7. | Action Plan to scale up the system in other States of Brazil and in LAC (roadmap and guidelines) and Final Report | On or around April 30, 2019 | | 8 4 | Third Face to Face exchange to present preliminary results of Components 1 and 2 and discuss scaling up strategy | On or around March 31, 2019 | Cultural Organization Agency, Japan Cultural Organization under the auspices of UNESCO Agency, Japan #### Mejerda River It is virtually certain that drought will become more severe. ## Microwave Remote Sensing of Land Hydrology # Preliminary outputs Gautemala #### LAI output from CLVDAS Gautemala spatial average #### **CLVDAS LAI and major products** #### 3.3. Application: Horn of Africa drought #### **EXECUTIVE BRIEF** #### **HORN of AFRICA DROUGHT** 2011 4 August 2011 #### HIGHLIGHTS - 12.4 million people are in urgent need of assistance in Djibouti, Ethiopia, Kenya and Somalia. - Neighbouring countries South Sudan, Sudan, and Uganda all require support to ensure the crisis in the Horn of Africa does not spill over their borders. - FAO funding gap as of 4 August 2011: USD 111.8 million. #### PRIORITY AGRICULTURAL CHALLENGES - protecting livestock assets by preventing livestock disease outbreaks to ensure the continued functioning of vital livestock export markets. - · enabling farmers to plant during the coming rainy season to ensure the availability of food in the next season. - increasing households' access to food through cash-for-work that has a longer-term benefit in terms of rehabilitating vital agricultural infrastructure. [FAO, 2011] [Anderson et al., 2012] → We cannot have the access to many ground observations to develop the drought prediction system. #### Leaf Area Index timeseries Blue: Prediction Green: Horn of Africa drought (reanalysis) 1.2 reanalysis(2010-2011) Predictions: starting from 1 Oct 2010 Real Predicion) 1.0 reanalysis(2004-2009) real prediction 0.8 0.6 0.4 0.2 0.0 100 150 250 350 200 day from Jul 1st reanalysis(2010-2011) Predictions: starting from 1 Jan 2011 (Real Predicion) 1.0 reanalysis(2004-2009) real prediction 0.8 0.6 0.4 0.2 0.0 250 100 150 200 300 400 day from Jul 1st reanalysis(2010-2011) Predictions: starting from 1 Mar 2011 (Real Predicion) reanalysis(2004-2009) 1.0 real prediction 0.8 0.6 0.4 0.2 100 150 200 day from Jul 1st 250 350 [Sawada and Koike, JGR-A, submitted] Ceará **Previous Year Hydro-** met Forcing with Modified Rainfall by Seasonal Prediction AMSR2 Satellite microwave brightness temperature > GLDAS 2.1 meteorological forcing GFDLCM2p5 Seasonal prediction precipitation Water Hazard and Risk Management under the auspices of UNESCO ## Application to estimate required irrigation water volume without the irrigated water volume and its supply timing Irrigated area, water volume and its supply timing: I:#h#exdp#ki#Luijdirg#Lind/#zdiru#yroph#bg#kw#xssd#kipbj/#zh#fdfxoki#D#bg#kurs#|hg# xgh#ki#Luijdwirg#frogWirg#|#pxwipj#Linfskdwirg#bg#Luijdwirg#dvh#ki#IV#guxjkw#|wip#bg#fdy#fpsdir#k#W#ki#kirs#|hoj#cgh#dpiloj#frogWirg# Id#Cohtxhofh/#zh#fdd#xdxdwhki#hiihfwkhdxw#ci#LuijdwirgI Estimation of the required irrigation water volume: Zhthvoplophidthjudjlophirsthophidththulophidthulophidthu