Regional Training Workshop "Advances in Remote Sensing Application in Water Resources Management"

Flood and Drought Monitoring and Prediction by Satellite-based Microwave Remote Sensing

Toshio Koike

Director, International Centre for Water Hazard and Risk Management (ICHARM)
Council Member, Science Council of Japan (SCJ), Cabinet Office of Japan
Professor Emeritus, the University of Tokyo
Chair, River Council of Japan

Definition of Remote Sensing

Remote Sensing is a technology for identifying a target and estimating its physical, chemical and biological conditions without touching by using its inherent characteristics of emission, reflection, absorption and transmission of electromagnetic wave and its radiation transfer.

0.4-0.7um NaCl Fig. 4. Optical Emission Spectrometry

Electromagnetic Waves		Wavelength	generated by	
γ-RAY		- 0.1 nm	atomic nucleas interaction	1
X-RAY		0.1 - 10 nm	core electron ionization]
UV		10 nm - 0.4 μm	hull electron ionization].
VISIBLE		0.4 - 0.7 µm	hull electron exicitation]
INFRARED	NEAR	0.7 - 1.3 µm	thermal vibration of molecule and lattice of the substance	ŀ
	SHORT WAVE	1.3 - 3 µm		
	MEDIUM	3 - 8 µm		
	THERMAL	8 - 14 µm		4
	FAR	14 µm - 1 mm		
MICROWAVE		1mm - 1m	rotation/reversal mode]

WATER Microwave Remote Sensing

Strong Dipole Molecule

Unique Roles in the Earth Environment

- Large Specific Heat of Liquid Water:
 - → Ocean as a heat transporter
- Large Heat Exchange through Liquid Gas Phase
 Transition → Water vapor as a heat transporter
- Solid ICE Crystal Lattice:
 - → Ice floats in water & bine drives the great ocean conveyor belt.

Strong
Dielectric
Material

Microwave Remote Sensing of Land Hydrology

Satellite Precipitation Sensors

Land Surface Monitoring by SAR

SAR measures a intensity of microwaves reflected from the earth's surface

The intensity is called "backscattering coefficient $\sigma^0 = f(Mv, Sd, Cl, Sv, D)$

Soil moisture:

Mv: Volume fraction of soil moisture (vol.)

Surface roughness:

Sd: Standard deviation of surface height (cm)

CI: Surface correlation length (cm)

Soil parameter:

Sv: Volume fraction of soil grains (vol.)

D: mean diameter of soil grains (cm)

Scattering image

Nigeria Flood in September 2018

World Africa Americas Asia Australia China Europe India Middle East United Kingdom

ition v Q =

Nigeria declares 'national disaster' after severe floods kill 100

By Damilola Odufuwa and Bukola Adebayo, for CNN

① Updated 1029 GMT (1829 HKT) September 18, 2018

A man gestures next to his flooded house following heavy rain near the Nigerian town of Lokoja, in Kogi State, on September 14, 2018.

Residents steer a dugout canoe past flooded houses in Lokoja capital of Kogi State on September 14,

Nigeria floods kill 100 people across 10 states

A national disaster has been declared in four states after devastating floods hit different parts of Nigeria.

vigeria's rainy season brings with it inevitable flooding [Afolabi Sotunde/Reuters]

https://www.aljazeera.com/news/2018/09/nigeria-floods-kill-100-people-10-states-180917193612830.html

https://edition.cnn.com/2018/09/18/africa/nigeria-flood-national-disaster/index.html

Identify inundation area on Sep-22, 2018

Source: **Copernicus Sentinel Data**

Easily identification & high frequency but covered with cloud

All weather & high spatial resolution but low frequency

Flood Area by SAR

Flood Area map

Source of back image: "NASA Worldview"

Niger River Flood Area Map

5) Oct-10, 2018

6) Oct-22, 2018

7) Nov-03, 2018

8) Nov-15, 2018

Source of back image: "NASA Worldview"

Physical Measurement Approach

The Radiative Transfer Equation

Temporal Variation of Spatially Averaged Validation

Seasonal Variation of the Soil Moisture in the Tibetan Plateu 6G Mv(%) tibet_D 2003SEP-lost

Microwave Remote Sensing of Land Hydrology

AMSR2

Carbon-LAI conversion model

Background: Scientific Contribution

Model

Coupled **Data Assimilation**

Electronic-Magnetic Wave

(leaf area index) Leaf Biomass SiB2 model ! (Net Primary Production) Carbon Allocation

Dynamic Vegetation Model

Root Biomass

Sawada & Koike, JGR (2014)

Stress-induced loss

turnover

Update

arpon-pool

→ Relationship between ecological and hydrological processes is important for analyzing drought process.

Hydrometeorology-Agriculture Droughts Prediction System

Drought analysis

Wheat production

2007 Morocco Drought

LAI anomaly from CLVDAS

Hydrometeorology-Agriculture Droughts Prediction System

Agricultural Drought Monitoring-Prediction

Aqua AMSR-E

North Africa

Drought Early Warning System based on Satellite Land Data Assimilation From 20070101 To 20070331 = 90days, 90frames

200701 200803 200801 200802 Loop: ✓ Int.: 100 ▼ (ms) #:1 << |< < || > > Reanalysis LAI anomaly 20070101 Forecast LAI anomaly ave 20070101 from 200701 Tunisia LAI

Background: Long-term Serious Droughts

Rainfall Anomaly

Number of Dry Days

Vegetation Water Supply Index (VWSI) Anomaly

Marengo et al., 2017

# .	Deliverable .	Expected Date
0 0	On signing of the Contract and commencement of the Services	On or around May 31, 2018
Compon	ent 1: Northeast Agriculture Drought Overview	
1 0	Action Plan for Components 1 and 2	On or around June 18, 2018
2 .	First Face to Face exchange in Fortaleza, Brazil	Week of 18-22 June, 2018
3 .	Agricultural drought monitoring: system parameter confirmation	On or around August 31, 2018
4 .	Agricultural drought monitoring and seasonal prediction system for the Northeast of Brazil	On or around December 31, 2018
Compon	ent 2: Agricultural Drought Monitoring and Forecasting Pilot f	for the <u>Ceará</u> State
5 &	Second Face to Face exchange, training activities in Tokyo, Japan	October (4 weeks), 2018
6 ₽	Pilot agriculture-drought monitoring and prediction system for the Ceará State	On or around March 31, 2019
Compon	ent 3: Assess the pilot's results and establish a strategy to scale	up the system
7.	Action Plan to scale up the system in other States of Brazil and in LAC (roadmap and guidelines) and Final Report	On or around April 30, 2019
8 4	Third Face to Face exchange to present preliminary results of Components 1 and 2 and discuss scaling up strategy	On or around March 31, 2019

Cultural Organization

Agency, Japan

Cultural Organization

under the auspices of UNESCO

Agency, Japan

Mejerda River

It is virtually certain that drought will become more severe.

Microwave Remote Sensing of Land Hydrology

Preliminary outputs Gautemala

LAI output from CLVDAS

Gautemala spatial average

CLVDAS LAI and major products

3.3. Application: Horn of Africa drought

EXECUTIVE BRIEF

HORN of AFRICA DROUGHT

2011

4 August 2011

HIGHLIGHTS

- 12.4 million people are in urgent need of assistance in Djibouti, Ethiopia, Kenya and Somalia.
- Neighbouring countries South Sudan, Sudan, and Uganda all require support to ensure the crisis in the Horn of Africa
 does not spill over their borders.
- FAO funding gap as of 4 August 2011: USD 111.8 million.

PRIORITY AGRICULTURAL CHALLENGES

- protecting livestock assets by preventing livestock disease outbreaks to ensure the continued functioning of vital livestock export markets.
- · enabling farmers to plant during the coming rainy season to ensure the availability of food in the next season.
- increasing households' access to food through cash-for-work that has a longer-term benefit in terms of rehabilitating vital
 agricultural infrastructure.

[FAO, 2011]

[Anderson et al., 2012]

→ We cannot have the access to many ground observations to develop the drought prediction system.

Leaf Area Index timeseries Blue: Prediction Green: Horn of Africa drought (reanalysis) 1.2 reanalysis(2010-2011) Predictions: starting from 1 Oct 2010 Real Predicion) 1.0 reanalysis(2004-2009) real prediction 0.8 0.6 0.4 0.2 0.0 100 150 250 350 200 day from Jul 1st reanalysis(2010-2011) Predictions: starting from 1 Jan 2011 (Real Predicion) 1.0 reanalysis(2004-2009) real prediction 0.8 0.6 0.4 0.2 0.0 250 100 150 200 300 400 day from Jul 1st reanalysis(2010-2011) Predictions: starting from 1 Mar 2011 (Real Predicion) reanalysis(2004-2009) 1.0 real prediction 0.8 0.6 0.4 0.2

100

150

200

day from Jul 1st

250

350

[Sawada and Koike, JGR-A, submitted]

Ceará

Previous Year Hydro-

met Forcing with Modified Rainfall by Seasonal Prediction

AMSR2

Satellite microwave brightness temperature

> GLDAS 2.1 meteorological forcing

GFDLCM2p5 Seasonal prediction

precipitation

Water Hazard and Risk Management

under the auspices of UNESCO

Application to estimate required irrigation water volume without the irrigated water volume and its supply timing

Irrigated area, water volume and its supply timing: I:#h#exdp#ki#Luijdirg#Lind/#zdiru#yroph#bg#kw#xssd#kipbj/#zh#fdfxoki#D#bg#kurs#|hg#
xgh#ki#Luijdwirg#frogWirg#|#pxwipj#Linfskdwirg#bg#Luijdwirg#dvh#ki#IV#guxjkw#|wip#bg#fdy#fpsdir#k#W#ki#kirs#|hoj#cgh#dpiloj#frogWirg#
Id#Cohtxhofh/#zh#fdd#xdxdwhki#hiihfwkhdxw#ci#LuijdwirgI

Estimation of the required irrigation water volume: Zhthvoplophidthjudjlophirsthophidththulophidthulophidthu