Date: July 2016- On-going

Objectives/Outcomes:

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) is one of the popular satellite-based precipitation estimations which has three products in different spatio-temporal resolutions. In majority of cases, these data are used in policy making and therefore the users normally don’t have necessary technical capacity to work with these special file formats. Thus, a user-friendly precipitation database will be a great asset   in monitoring long-term climate patterns, particularly in studying the climate change patterns in arid and semi-arid areas of West Asia (including: Afghanistan, Pakistan, Azerbaijan, Iran, Iraq, Tajikistan and Turkmenistan) which lack this vital dataset.

The Grid-based Precipitation Dataset for West Asia in the first step will extract and provide an online user friendly as well as visual version of the different PERSIANN products for the region of West Asia for multi-national application to enhance their effectiveness in the formulation and implementation in drought monitoring and water management strategies as well as climate model verifications which will ultimately contribute to better climate change prediction. The second step would be to collect ground observation (in progress for Iran, Iraq and Pakistan) to be merged with satellite-based precipitation and develop the most accurate and precise grid-based precipitation datasets for the region.